

Carbon Dioxide Sealing Capacity: Textural or Compositional Controls? Project #: DE-FE0002028

Constantin Cranganu Brooklyn College of the City University of New York Dept. of Earth and Environmental Sciences

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Benefits of the program
- Project Overview: Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary Key Findings
- Summary Lessons Learned
- Summary Future Plans
- Appendix

Benefit to the Program

The Program goal being addressed:

- Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.
- The research project is investigating the role of compositional and structural properties of caprock on sealing capacity of a CO₂ sequestration site. The research, when finished, will advance our knowledge of the sealing capacity of rocks such as shales and anhydrites and, in turn, will provide a better understanding of the processes that take place in geologic reservoirs that are subject to CO₂ injection.
- This research contributes to the Carbon Storage Program's effort of ensuring 99% CO₂ storage permanence in the sequestration zones.

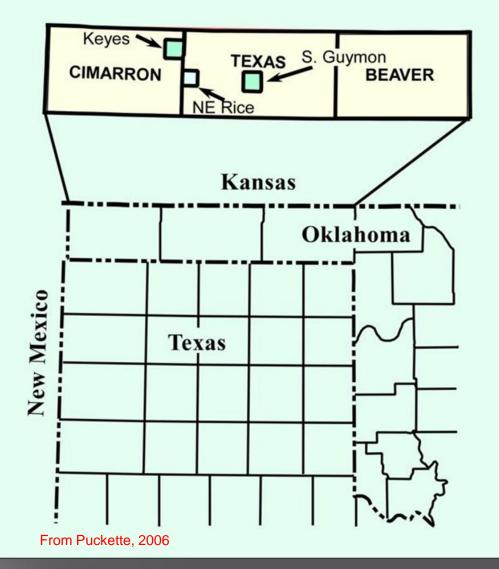
Project Overview: Goals and Objectives

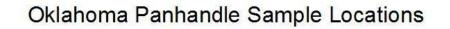
Major Objective

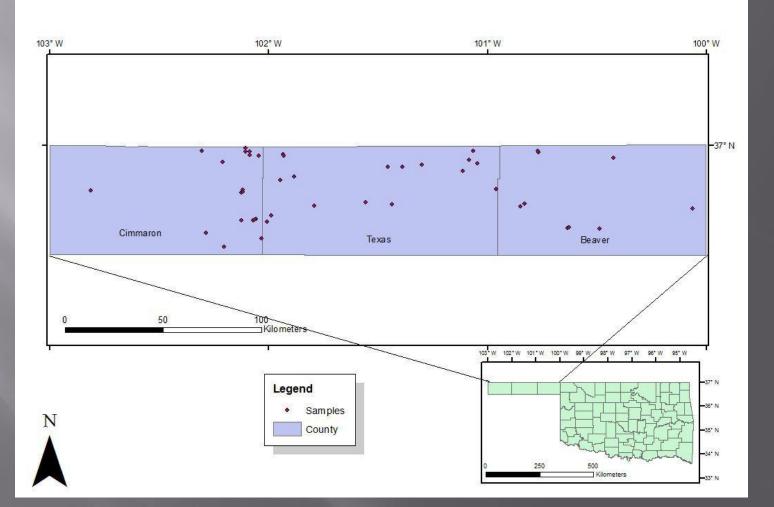
 The major objective of this research is to test whether textural parameters (e.g., the pore-throat size, distribution, geometry, and sorting, grain size, etc.) or compositional parameters (e.g., compaction, mineralogical content, cementation, organic matter content, carbonate content, etc.) of cap rocks control their CO₂ sealing capacity.

Project Overview: Goals and Objectives

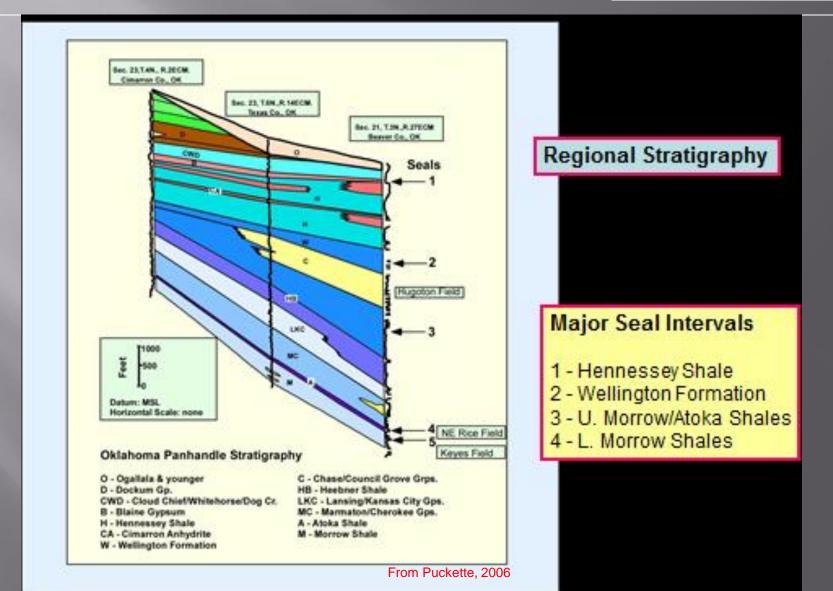
- Advancing scientific discovery and understanding through proposed activity that will be intimately related to promoting teaching, training and learning activities at Brooklyn College.
- I teach an upper tier core course, titled "*Climate Change Torn between Myth and Fact*". During course lectures and practice activities, undergraduate students from various departments will learn about the most important environmental issues raised by increased concentration of CO₂ in the atmosphere and the efforts taken by many countries, including USA, to reduce the amount of CO₂. One of the efforts, namely carbon dioxide sequestration, will be exemplified by our anticipated results.


Project Overview: Goals and Objectives


Students get trained in incorporating new data from our database in existing databases that will be provided to them during the course and practice activities.



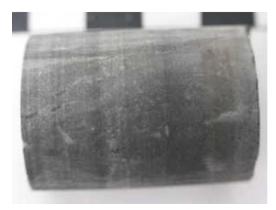
The three gas fields (Keys, NE Rice, and S. Guymon) investigated in this project

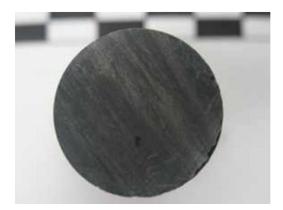


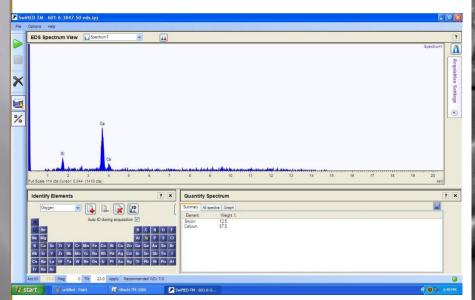
Brooklyn The City University of New York College

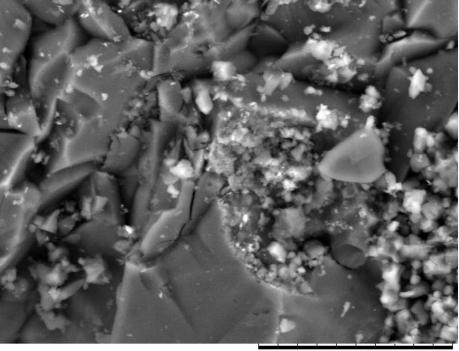
Technical Status

ID #	FILE #	COUNTY	Formation	Top (ft)	Bottom (ft)	Lat	Long	Sample Image	Sample Description
1	120	TEXAS	Morrowan	4419	4466	36.84006	-101.94854	<u>Pic</u>	Gray medium grained quartz sandstone
2	163	TEXAS	Morrowan	4410	4459	36.84413	-101.93947	pic	Light brown medium to coarse grained sandstone
3	239	BEAVER	Marmaton	6720	6839	36.61827	-100.4896	Pic	Black fine grained lime mudstone
4	269	BEAVER	Des Moinesian	6430	6533	36.62177	-100.63258	Pic	Black fine grained lime mudstone
5	328	BEAVER	Permian	866	1030	36.50206	-100.94257	pic	reddish waxy anhydrite
6	334	BEAVER	Marmaton	6646	6676	36.61827	-100.4896	Pic	Black fine grained lime mudstone
7	868	TEXAS	Purdy	4524	4547	36.95927	-101.93526	<u>Pic</u>	Black fine grained Fissile shale
8	874	TEXAS	Morrowan	4559	4569	36.95239	-101.91719	pic	dark gray fine graineded limestone
9	878	TEXAS	Cherokee	4524	4600	36.6806	-101.98941	Pic	Black fine grained lime mudstone
10	900	CIMARRON	Morrowan	4496	4557	36.92432	-102.21267	Pic	Light brown fine grained quartz sandstone
11	946	BEAVER	Marmaton	6627	6741	36.61796	-100.48026	pic	Black fine graineded mudstone
12	953	BEAVER	Marmaton	6403	6462	36.62537	-100.50748	pic	Black fine graineded mudstone
13	3152	CIMARRON	Morrowan	4817	4916	36.53576	-102.20474	<u>Pic</u>	Black fine grained layered calcareous shale

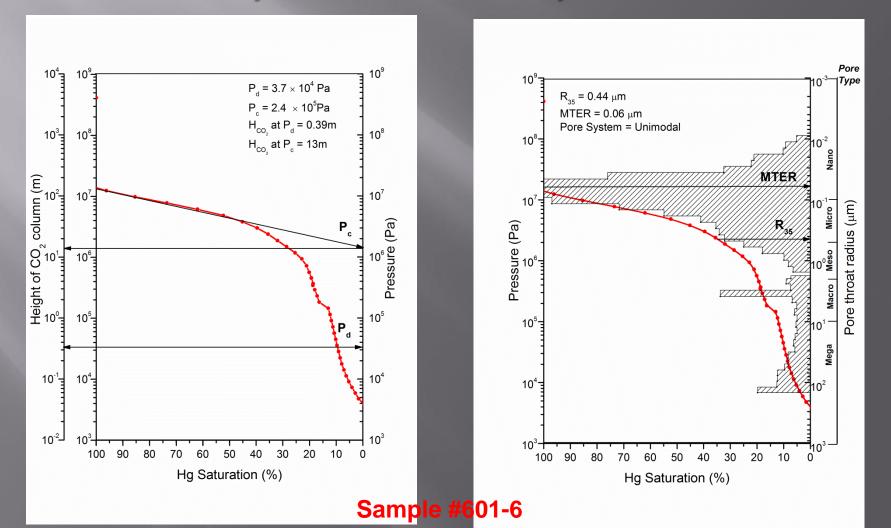



Sample #601-6 (Depth 3,847-3,850 ft) Gray Limestone (Fine – Medium Grain)





Sample #601-6 (Depth 3,847-3,850 ft) Gray Limestone (Fine – Medium Grain)


×4.0k 20 um

EDS analysis indicating the predominance of Ca. An XRD analysis indicates 96.7% calcite

SEM microphotograph. Calcite crystals are abundant. Intercrystalline porosity

Mercury Intrusion Porosimetry Measurements

Surface Area Measurements

Unit 2 Port 3

TriStar II 3020 V1.03 (V1.03)

.03)

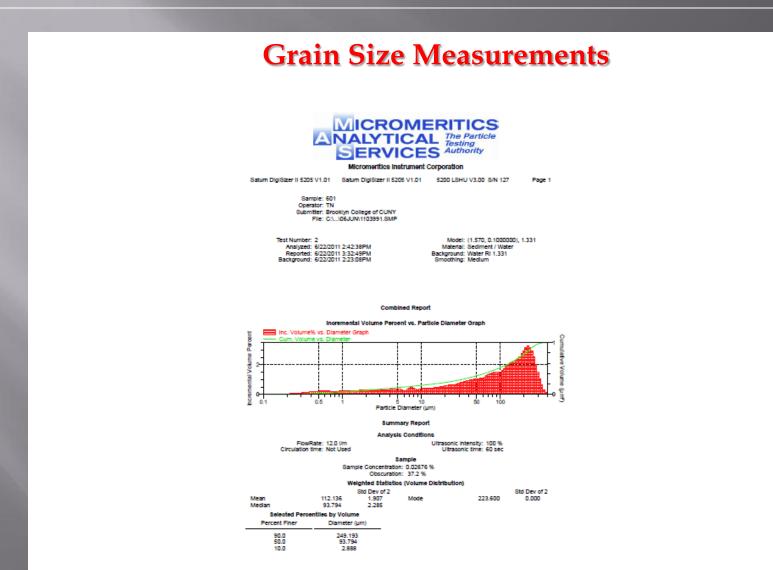
Serial #: 571

Page 1

Sample: 601 F3 Operator: IAR/AT Submitter: Brooklyn College File: C:\...\06JUN\1103991.8MP

Started: 6/23/2011 10:09:32AM Completed: 6/23/2011 12:45:41PM Report Time: 6/23/2011 1:15:17PM Warm Free Space: 6.6564 cm³ Measured Equilibration Interval: 10 s Sample Density: 1.000 g/cm³ Analysis Adsorptive: N2 Analysis Bath Temp.: 77.350 K Sample Mass: 4.0348 g Cold Free Space: 16.1008 cm² Measured Low Pressure Dose: None Automatic Degas: No

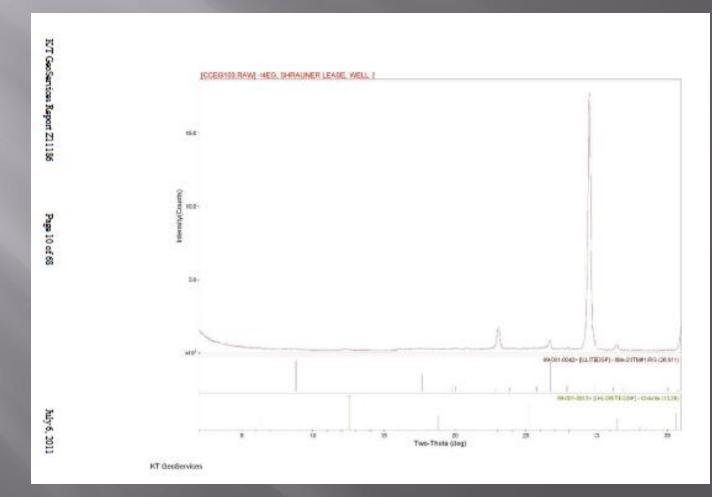
Comments: Degas at 110 C for 16h


Summary Report

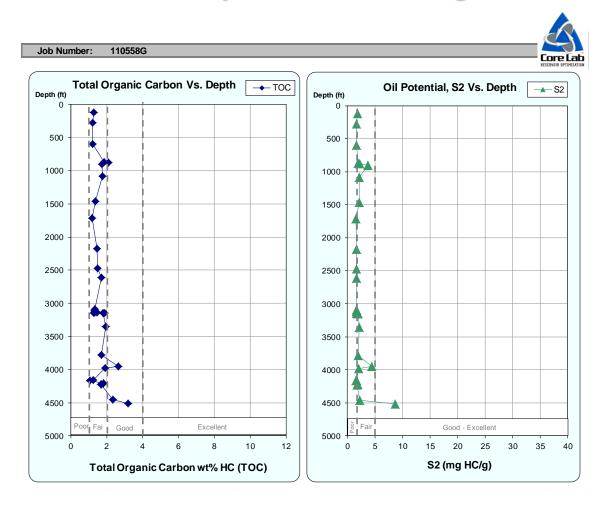
Single point surface area at P/Po = 0.300959242: 0.5840 m³/g

BET Surface Area: 0.6087 m³/g

Sample #601-6



Sample #601-6


XRD Measurements

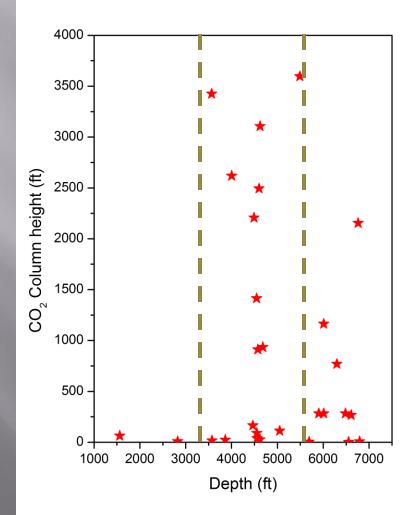
Sample #601-6

Source-Rock Analysis and Total Organic Carbon

Source-Rock Analysis and Total Organic Carbon

Accomplishments to Date

- 30 samples of caprock from three depleted gas fields in Oklahoma Panhandle have been collected.
- For each sample the following measurements have been performed:
 - Mercury Intrusion Porosimetry
 - SEM microphotography
 - EDS analysis
 - Surface area
 - Grain size
 - Source rock analysis and Total Organic Carbon
 - XRD
 - Lithological descriptions


Summary Key Findings

- We estimated the sealing capacity of caprocks in the Oklahoma Panhandle in terms of CO₂ column height that can be held back by a given seal.
- The range of CO₂ column height for the samples used in this research is between 2 ft – 3,596 ft (0.6 – 1,096 m)
- The average CO₂ column height is 945 ft (291 m)
- The depth interval between approximately 3,500 5,500 ft exhibits the largest values of CO₂ column height.
- The above mentioned interval is comprised of mainly Cherokee and Morrowan formations (shale seals).

Summary Key Findings

The distribution of CO₂ column height value with sample depth

Summary Lessons Learned

The students learned how to organize research, from developing research questions to crafting a proposal, to working with scientific literature, to designing the research plan.

The students applied a potential method for learning and exploring a topic of interest, like carbon dioxide sequestration as a way of mitigating the current global warming trend.

The students learned that responsibility and integrity in the research program are essential components of their process of becoming future scientists.

Summary Future Plans

- We are planning to incorporate permeability measurements (both absolute and relative) as a new structural/compositional variable in our model of caprock sealing capacity.
- We will run sensitivity test to estimate the importance of other parameters on CO₂ column height:
 - contact angle CO_2 /brine (0, 10, 20, or 60)
 - pressure at sample depth
 - temperature at sample depth
 - brine concentration at sample depth
 - CO₂ density
 - brine density
 - interfacial tension

Appendix Organization Chart

- PI: Prof. Constantin Cranganu
- Sadiqua Azad, PhD student
- Kieva Watson, Undergraduate student
- With over 16,000 students, Brooklyn College has an impressive racial, ethnic, religious, and minority diversity. From its founding seventy-six years ago, the College has offered men and women – immigrants or the children of immigrants, often the first in their families to go to college – the opportunity to receive a first-rate education that leads to productive careers and satisfying lives. As researchers and educators at Brooklyn College, we are committed to broaden opportunities and enable participation of all students in research projects, as an essential way to maintain the health and vitality of science and engineering.

Appendix Gantt Chart

D		Task Name	Duration	Start	Finish	Predecess	Resource	Resource 2010 2011 2012									0040				
1	•						Names							2012						2013	
L.	U							Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	
1		1.1. Project Management and	7.7 mons	Tue 6/1/10	Fri 12/31/10							h									
		Planning - Sample Collection																			
2	1	2.1 Data Collecting - MIP	197 days?	Sat 1/1/11	Fri 9/30/11	1									h						
		measurements																			
															Ļ						
3	11	2.2 Data Collecting - Conduct	130 days?	Mon 10/3/11	Fri 3/30/12	2											h				
		other textural measurements																			
4		2.3. Data Collecting - Conduct	87 days?	Mon 4/2/12	Tue 7/31/12	3											<u> </u>				
		compositional measurements																			
																		1			
5	11	3.3 Testing Hypotheses	109 days?	Wed 8/1/12	Mon 12/31/12	4															
6	32	Milestone - Phase I	154 days?	Tue 6/1/10	Fri 12/31/10				4000			1									
7	31	Milestone - Phase II	412 days?	Sat 1/1/11	Fri 7/27/12	6															
8		Milestone - Phase III	111 days?	Mon 7/30/12	Mon 12/31/12	7													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Appendix Bibliography

Puckette, J., 2006, Naturally Underpressured Compartments And the Geologic Sequestration of Carbon Dioxide, <u>http://www.searchanddiscovery.com/documents/2006/</u>06088houston_abs/abstracts/puckette.htm?q=%2BtextStr ip%3Apuckette

Thank you for your attention!